Electrochemical redox cycling in small gaps for detection of biomarkers with high selectivity against background interferents

Andrew J. Grossa, Sara E. C. Daleb and Frank Markena
aDepartment of Chemistry, University of Bath, Bath, BA2 7AY, UK
bDepartment of Physics, University of Bath, Bath, BA2 7AY, UK
A.Gross@bath.ac.uk

Micro- and nano-gap electrode systems having two independently controlled working electrodes provide excellent opportunities in electroanalysis with applications ranging from mechanistic studies to single molecule detection \cite{1,2}. In this work a “generator-collector” technique is exploited in which one electrode (“the generator”) is used to convert a species of interest, which is then rapidly transported to the second electrode (“the collector”). This approach offers signal enhancement through current amplification, chemical filtration and spatial separation effects.

Dual-electrode systems prepared using straightforward methods are described and tested in aqueous solutions and biological media. Gold, indium tin oxide, and boron-doped diamond micro-gap electrodes were prepared using epoxy-based spacers partially etched using piranha solution. The electrodes have a plate-plate geometry with an inter-electrode spacing in the range 1 to 20 micron. Application of these electrodes in chemical sensing is demonstrated for model redox systems and biologically-relevant analytes in the presence of background interferents. The advantages and disadvantages of the micro-gaps will be discussed.

Figure 1: (A) Schematic drawing of the generator-collector sensing mechanism. (B) SEM micrograph of a microtrench electrode.
